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Conclusion First (so you don’t have to read so much)
There are many ways to analyze FMRI datasets.  FMRI-based investigators need to be aware
of the different techniques, their underlying assumptions about the FMRI signal and noise,
their strengths and limitations, and their applicability to any given experimental situation.
   In other words: understand what you are doing.  Or you will do something stupid.

Summary Second (if you are still reading)
The linear models used in the vast majority of FMRI-based papers are based on two
assumptions: [i] multiple repetitions of the same stimulus will result in the same response in the
MRI signal (“shift invariance”), and [ii] when responses from multiple stimuli overlap in time,
the signal changes add (“linearity”). Statistical inference from these models is based on the
assumption that the noise is additive, Gaussian, and independent of the BOLD signal.  The
principal differences between various linear analysis methods lie in [a] the modeling of the
temporal shape of the BOLD response, and [b] the assumptions about the spatial and temporal
correlation of the noise.

Signal Modeling Principles in FMRI Data Analysis
A signal is a measurable response, often a response to a stimulus; noise is the component of
measurement that interferes with detection of the signal.  Statistical decision theory is a branch
of mathematics/signal processing/statistics that deals in development of methods to distinguish
noise-only measurements from signal+noise measurements.  This theory requires understanding
the relationship between the stimulus and the signal, and requires characterizing the noise
statistically.
   FMRI datasets are particularly challenging.  The stimulus-signal relationship and the noise
statistics are both poorly characterized and are both still subjects of research.  The result is that
there is no “best” way to analyze FMRI time series data: there are only “reasonable” analysis
methods.  It is often appropriate to analyze a dataset in more than one way and then compare
the results to see if the neuroscience conclusions are affected.  It is a measure of the robustness
of FMRI datasets that when such comparisons are made, the partisans for various methods are
usually reduced to arguing about very minor changes in the activation “blobs”.
   To deal with data systematically, we must make some assumptions about the signal and the
noise.  These assumptions will be wrong (overly simple), which means that it is important to
understand the model underlying any given analysis, and perhaps also to try more than one
analysis method to see if the results vary significantly. Different kinds of experiments will
require different kinds of analyses, since the signal models and questions asked about the signal
will vary.



   One fundamental problem with FMRI data analysis is that we don’t have enough data.  This
sounds crazy: it is routine now to gather 1+ Gigabytes of data per subject.  But most of this vast
pile of bits is not relevant to neural activity (the BOLD component of the FMRI signal is
weak), and we must make many decisions to make a brain map.  Typically, there are 10,000-
100,000 EPI voxels inside the brain, and at least one decision is made per voxel (e.g., “is it
active?”).  If the chance of an error is 1% per voxel, then we’d expect 100-1000 errors in every
brain map.  This may be as big as the number of truly active voxels in the brain; such results
would be garbage.  Adapting to this “curse of multiple comparisons” is a major issue in FMRI
data analyses.

Temporal Models: Linear Convolution
A linear model is built on the assumption that the signals from separate stimuli just add up.
A convolution model assumes the separate signals from identical stimuli are the same in shape,
amplitude, and in time delay from the stimulus times.  Linear convolution models are the most
common in FMRI;  for example, an idealized response to three stimuli might look like:

In the absence of noise, the “summed responses” curve, plus a baseline, would comprise our
measurements.
   A large number of linear convolution measurement models can be written down, each one
customized to the particular experimental application.  For example, if we assume that the
stimuli occur on the TR time grid, we could write
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Here, the stimuli are modeled as off or on (0 or 1); the response at time t to an individual
stimulus that occurs at time 0 is denoted by the hemodynamic response function (HRF) h(t)
(i.e., a stimulus at time τ causes a response h(t—τ) at time t); and the baseline is modeled as a
linear function of time.  The sum extends p⋅TR into the past; the length of this interval is chosen
to match the expected duration of the MRI signal response after the stimulus.
   If we assume that the stimulus times are not bound to the TR grid, then a related model is

� 

Z(t) = β0 + β1 ⋅ t + h(t −τ s )+ ε(t)
s=1

Ns

∑
where there are Ns stimuli that occur at times τ1, τ2, ….  A similar model can be used for a
stimulus that has two phases, which don’t always occur at the same temporal offset (e.g., the
first phase is a visual presentation and the second phase is the subject response):

Stimulus times
Individual responses: h(t )

Summed responses
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Z(t) = β0 + β1 ⋅ t + h1 t −τ s( ) + h2 t − (τ s +δs )( )[ ] + ε(t)
s=1

Ns

∑
where δs is the delay (“jitter”) between the two phases for the sth stimulus.
   All of these models can be generalized to allow for multiple classes of stimuli.  Each stimulus
class q would get its own hemodynamic response function 

� 

h(q) (t) .
   We have not yet specified precisely what we are trying to determine from the data Z(t);
something about h(t) presumably, but what?  There are two classes of hemodynamic models
that are widely used in FMRI data analysis: fixed shape HRF with only the amplitude of
response unknown, and parameterized (“variable shape”) HRF with the shape and amplitude of
response unknown.  (N.B.: What we actually observe is derived from the hemodynamic
impulse response function convolved with the neuronal response function, and that making
inferences about one of these functions alone require making assumptions about the other
function, or making some additional measurements.)
   Fixed Shape HRF : In these models, we assume h(t)=α⋅r(t), where α is unknown and r(t) is
some reference function we choose; Mark Cohen’s function 
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r(t) = tbe− t /c  for 

� 

t > 0  is a popular
shape (e.g., b=8.6 and c=0.547; the time delay to the peak is 

� 

b ⋅ c  and the FWHM of the peak is
approximately 

� 

2.4 ⋅ c ⋅ b  for 

� 

b >1).  These models have the advantage of having fairly few
parameters per voxel: one α(q) for each stimulus class q, plus the baseline parameters (β0 and β1
in the models above).  The b and c parameters are fixed in these types of models, and are often
assumed to be the same for all subjects.  A refinement is to separately estimate b and c for each
individual using a simple motor or visual FMRI paradigm, prior to the more complicated
experiment that you are undoubtedly contemplating.
   The BOLD response to a brief stimulus (e.g., a 100 ms flash of light) typically lasts about 10-
12 seconds, comprising a 2 s delay, 3-5 s rise and a 4-5 s fall.  For long values of TR (3 s or
more), using a fixed shape HRF makes a great deal of sense: there isn’t enough temporal
resolution to try to capture the shape.
   Variable Shape HRF: In these models, more parameters are added to the unknown function
h(t) in order to let its shape vary.  There are two principal motivations: first, to fit the data Z(t)
better in each voxel so that the statistical significance of activation is properly assessed; and
second, to allow statistical inference on the shape of h(t) itself (e.g., is the activation amplitude
stronger from 4-8 s post-stimulus or from 8-12 s post-stimulus?).
   For example, the widely-used standard SPM variable shape HRF model has the form
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h(t) =α0 ⋅ rpk (t)+α1 ⋅ ′ r pk (t)−α2 ⋅ rpu (t)−α3 ⋅ ′ r pu (t), where each rxx (t)  is of Cohen’s form, with 

� 

rpk (t)
using (b,c) parameters that represent the BOLD peak and

� 

rpu(t)  using ( b,c) parameters
representing the later BOLD post-undershoot.  The inclusion of the derivatives ′rxx (t)  allows for
small unknown time shifts, since rxx (t + s) ≈ rxx (t)+ s ⋅ ′rxx (t ) .  (If there is more than one stimulus
class, each class requires a separate set of four α parameters.)
   More complicated models (e.g., polynomial, spline, or trigonometric series) can allow for
more shape flexibility.  However, it can become impossible to find activation (i.e., state
confidently that h(t) is nonzero) when there are too many parameters for the data, since a very
high-dimensional model will fit a pure noise voxel almost as well as it fits a signal+noise case.
Similar problems arise when the number of stimulus classes is increased; again, the number of
parameters increases (a few α’s per q), and it is easy to go too far.  It is best to start with a
simple analysis of FMRI time series data, see if the results make sense, then progress to the use



of more complicated models to extract more information.  In this way, the data analyst can get
a feel for how many parameters can be estimated from the datasets.  It is a common mistake to
group the stimuli into too many classes, so that there are relatively few (under 20, say, in an
event-related design) responses per class.  FMRI datasets are not good enough to reliably assess
differential activation between tasks when there are so few samples per task.
   Inverse Models: Instead of solving for h(t) in each voxel, one can assume a fixed h(t) and
then solve for the stimulus time series f(t) that best fits the data in each voxel.  This approach
has the potential for finding neural activation patterns for complex continuous stimuli such as
video or audio presentations.  Such inverse models have not been widely applied, partly
because they involve a large number of parameters per voxel (for fitting f(t) to the data Z(t)).
   Statistical Inference from Linear Models: Under the assumption that the noise is Gaussian
and has a known temporal correlation structure, the statistics of linear models are fairly
straightforward.  The unknown parameters are estimated using a least-squares fitting criterion
(e.g., minimize 

� 

E = Z(t)−model(t)
t∑ 2

).  The magnitude of E is used to estimate the variance of
the noise.  From these estimates, the significance of linear combinations of the model
parameters can be calculated directly using F- or t-statistics (F-tests for multiple combinations
of parameters, t-tests for single combinations).  For example, in the fixed shape model, where
the only parameter of activation interest is α, the test gives the probability p that α=0 given the
data.  If this p-value is sufficiently small, we declare this voxel to be “active” and colorize it
somehow (usually, the color is based on the amplitude α, but is sometimes instead based on the
F- or t-statistic).  If we had two stimulus classes and so estimated α(1) and α(2) as the response
magnitudes for each type of stimulus, we could determine the p-value for the null hypothesis
α(1)−α(2)=0; we would presumably colorize voxels in which this p was small (indicating that
α(1)≠α(2)) and the p-values for α(1)=0 and/or α(2)=0 were also small—these would be locations
where the brain responded to at least one of the types of stimuli and responded differently to
the two different stimulus types.  And so forth—this kind of test is sometimes called a
conjunction analysis.  The limits of this type of inference are your imagination.  And the
quality of the data.
   Nonlinear Models?  There is nothing wrong with using nonlinear models for FMRI time
series; for example, one could directly solve for the (b,c) parameters in Cohen’s model, in each
voxel.  The practical drawback to nonlinear models is the difficulty of solving the fitting
equations for the parameters.  Linear models have the strong advantage that the least-squares
criterion leads to linear equations for the unknown parameters; efficient algorithms for solving
such equations have been well-established since the 1960s.  The same cannot be said for
solving nonlinear optimization problems.  Nevertheless, nonlinear models have some attractive
features, such as providing the ability to impose constraints on the shape of the expected
response.

Spatial Models
The most common form of FMRI data analysis is voxel-wise: each voxel time series Z(t) is
analyzed separately from all others.  The attraction is that the full spatial resolution of the echo-
planar images is kept.  However, we probably wouldn’t accept a brain activation map that
consisted solely of randomly scattered “on” voxel with no clear spatial structure; instead, we’d
go back to the data and try to figure out what went wrong.  But if we aren’t going to accept an



arbitrary spatial map, then we can increase our statistical power by only looking for spatial
activation patterns that are “reasonable”.  There are three commonly-used methods.
   Smoothing: One of the simplest ways to produce “reasonable-looking” activation maps is to
smooth the FMRI data spatially prior to the temporal analysis (or maybe after analysis).  If a
10–15 mm FWHM Gaussian blur is used for this smoothing, for example, then FMRI results
can be made to look much like PET results.  The drawback to such simple smoothing is
obvious: why bother to acquire high-resolution images if the first thing one does is to throw
that resolution away?  “Smart” smoothing is a variation that only does blurring within the gray
matter (e.g., as detected from a T1-weighted volume with ≈1 mm resolution).  This technique
uses the high resolution of FMRI cleverly.
   Clusters: A second way to produce “reasonable-looking” activation maps is via a dual-
thresholding technique.  After a voxel-wise time series analysis, voxels in which h(t) is
significantly different from 0 are selected; this first significance threshold is taken to be low, so
that a fair number of false positives can be expected.  The second thresholding step is to only
accept contiguous clusters of voxels that passed the first step; the threshold here is the
minimum allowable cluster size.  This technique allows for the detection of relatively small
amplitude activations, provided these activations cover a large region.
   Regions of Interest (ROIs): A third method is to pre-select voxels that are to be averaged
together; the selection is usually based on some anatomical criterion (e.g., the left hippo-
campus).  This technique has the advantage that specifically targeted anatomical hypotheses
can be addressed precisely, and that the regions can be tailored to each subject’s anatomy.  It
has the disadvantage that intra-ROI differences can be lost (e.g., anterior vs. posterior
hippocampus, if the ROI averages over the entire structure).  It also has the disadvantage that
manually selection of ROIs is a very time-consuming task.  Even postdocs have been known to
rebel at this.  (At the NIH, we now have “postbacs” to do the work that postdocs won’t do.)
   Statistical Inference: The major point of using spatial models is that they reduce the multiple
comparisons problem.  In the case of ROI analyses, it is often the case that only 10-20 ROIs are
used; the problem of dealing with 10,000-100,000 comparisons has been tossed away.  In the
case of smoothing, the elaborate analysis of “correlated random fields” has been developed to
determine the analytical relationship between F- and t-statistic thresholds and p-values when
the noise is strongly spatially correlated.  In the case of clustering, the analytical relationship
between cluster size threshold and p-value is unknown; as a result, direct numerical simulation
(i.e., of how big a cluster might get if there is no signal, only noise) is usually used.

Noise Models and Regression Methods
Modeling the distribution of the noise 

� 

ε(t) is nearly as important as modeling the signal (but not
as much fun).  It is almost always assumed that the noise is Gaussian—normally
distributed—mostly as a matter of analytical convenience and also as a practical starting point.
The issue then becomes one of modeling the correlation structure of the noise.
   For most forms of FMRI, the dominant source of “noise” in the time series is physiological
fluctuations: the subject’s heartbeat and breathing both contribute strongly to the variance in
the data—usually 3-4 times as much as the intrinsic MRI measurement variance.  The signals
from such quasi-regular sources are correlated in time and space.  For the most part, the spatial
correlations are ignored in FMRI analyses; the temporal correlations are another story.
   White Noise: The simplest analytical assumption is that the noise is uncorrelated in time and
space—this is the meaning of the term “white”.   However, statistical inference about whether



h(t)≠0 will tend to be optimistic (i.e., the p-values will be too small) when the temporal
correlations are strong.
   Colored Noise: One approach to dealing with non-white noise is to attempt to reduce the
degrees-of-freedom in the statistical estimates to allow for the fact that noise samples at
successive times are not independent.  Another approach is to modify the statistical estimation
procedure for h(t) to decorrelate (“prewhiten”) the time series—this will preserve the degrees-
of-freedom.  Both methods require estimating the temporal correlation structure in some way.
   Filtering: A related technique is to temporally filter the data. Removing high-frequency
components makes sense, since we know the BOLD effect takes 8-10 s to play out, anything
above (say) 0.1 Hz must be noise.  Also, removing low-frequency drifts makes sense, since
these are commonly seen in FMRI experiments (say, anything below 0.01 Hz, or some
frequency well below the stimulation frequency band).  After this is done, we’ve imposed our
own temporal correlation structure on the data in addition to the physiological structure.  It is
plausible to say that the filter-induced correlations are larger than the physiology-induced
correlations; we can then adjust the degrees-of-freedom downwards for the filter-induced
correlation structure and let it go at that.
   Spectral Resampling: Another way to estimate the significance of an estimated parameter is
via data randomization.  We want to determine if the value of the parameter that we estimated
was likely to have arisen just from noise.  To do this, we could simply generate many samples
of noise-only simulations, then analyze this “data”.  The difficulty is generating realistic noise
when one of the issues is that we are admitting ignorance about the structure and distribution of
the noise.  Resampling methods (e.g., randomization, bootstrap) deal with this by using the data
itself as the source of the noise-only simulations.  In the simplest case, the data time series can
be scrambled (in time) and then re-analyzed.  Scrambling (“randomization”) will destroy the
stimulus-response link (good); however, it will also destroy the temporal correlation of the
noise (bad).  A way around this latter difficulty is to scramble the data only after transforming it
to a spectral domain (e.g., wavelets, or short-time Fourier transforms).  Spectral transforms tend
to decorrelate noise—the correlation is mostly expressed in the different magnitudes of the
spectral coefficients.  The coefficients are then scrambled appropriately, the inverse spectral
transform is made, and voila!—a noise-only simulation with the (mostly) correct temporal
correlation structure has been produced.
   Direct Physiological “Noise” Reduction: It is certainly possible to monitor the heartbeat and
breathing of the subject during the FMRI experiment (e.g., with EKG and a respiratory belt “).
It is then possible to partially filter out the components of the FMRI time series that are
correlated with the physiological reference data.  Ideally, this should be done on the complex-
valued MR data, since a significant part of the noise turns out to be in the phase of the data.
Unfortunately, some manufacturers make it difficult or impossible to obtain the complex-
valued data.
   Regression Methods: As mentioned earlier, least-squares regression is by far the most
common method used to fit models to data time series.  This has two advantages: it is simple,
and it is optimal when the noise is truly Gaussian.  However, if the noise is not Gaussian, least-
square regression can be severely influenced by a few “outliers”; in least squares regression, a
datum that is 10 standard deviations away from the model counts 100 times as much in the
calculation of the fitting error E as does a point that is 1 standard deviation away.  With
Gaussian noise, the probability that a point is 10 or more standard deviations out is about 10−23,
so we don’t worry about it much.  But such points do sometimes occur in FMRI time series,



often due to scanner hardware glitches.  It is often worth examining FMRI time series for
outliers, since even a few can destroy an otherwise useful dataset.
   One way to minimize such problems, while not explicitly going “outlier-hunting”, is to use a
more robust regression method—one that is less sensitive to a few wild points.  In other fields,
a popular alternative to least-squares regression is L1 fitting, where the criterion is to minimize
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E = Z(t)−model(t)
t∑ .  The algorithms for this fitting are also well-established, provided that

the model is linear in the unknown parameters.  The main objection to using L1 regression is
that the statistics are less well understood; the parameter estimates are asymptotically Gaussian
as the number of data points goes to infinity, but it is not clear how relevant that is to the cases
that arise in FMRI data analysis.  Nor is it clear how to deal with temporal correlations in the
noise with L1 regression, except perhaps by some resampling scheme.
   Spatially Structured Noise: As alluded to earlier, if the noise is strongly correlated across
voxels, this fact can be used (via the theory of correlated random fields) to reduce the effective
number of comparisons needed to make an activation map.  Another way to use the fact that the
voxels are related is to try to estimate the temporal correlation structure in each voxel time
series using not just that voxel’s data but also the data from neighboring voxels.  In this
methodology, spatial smoothing is being applied, not directly in the estimation of the response
magnitude α, but rather in the estimation of the properties of the noise (i.e., any smoothing is
applied only after the α’s are estimated and their effect is subtracted from the data, leaving only
the residuals behind).  The impetus for using such techniques comes from the fact that accurate
estimation of temporal correlation structure is difficult since FMRI time series are usually fairly
short (e.g., 100 points).  Assuming that neighboring voxels have similar temporal correlations
helps to overcome this problem.

Conclusion Again
There are many ways to analyze FMRI datasets.

• As seen above, even the linear shift-invariant model has many variations (and there are
more than this outline has covered!), each of which would give different results—only
slightly different, we would hope.

FMRI-based investigators need to be aware of the different techniques, their underlying
assumptions about the FMRI signal and noise, their strengths and limitations, and their
applicability to any given experimental situation.

• One might hope that FMRI data analysis would be a “one size fits all” situation, but that
is not the case.  Just as the experiment design must be tailored to explore your
underlying hypotheses, so the data analysis must be tailored to answer the questions that
you pose from the data that you have.

• People argue about the underlying assumptions that are explicit or implicit in the
various methods that are outlined above, debating both the validity of the assumptions
and their importance.  To judge between these methods requires (at least) a conceptual
appreciation of the techniques.

In other words: understand what you are doing.  Or you will do something stupid.
• Linear analysis is a complex and powerful tool, and “with great power comes great

responsibility.”  In this case, the responsibility is to understand.
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